Replicating biological patterns is promising for designing materials with multifaceted properties. Twisted cholesteric liquid crystal patterns are found in the iridescent tessellated cuticles of many insects and a few fruits. Their accurate replication is extremely difficult since discontinuous patterns and colors must coexist in a single layer...
-
2020 (v1)Journal articleUploaded on: December 4, 2022
-
August 2, 2022 (v1)Journal article
Colorful, cholesteric patterns are ubiquitous in the bodies of insects and fishes. Bioinspired materials may be employed in smart coatings for optical communication, signaling, and camouflage. However, due to the fundamental challenges associated with such applications, the development of adaptive monolayers with continuous, hierarchical...
Uploaded on: December 3, 2022 -
November 2018 (v1)Journal article
The outermost part of insect cuticles is very often covered with wax, which prevents desiccation and serves for chemical communication in many species. Earlier studies on cuticular waxes have mainly focused on their chemical composition revealing complex mixtures of lipids. In the absence of information on their physical organization, cuticular...
Uploaded on: December 4, 2022 -
June 16, 2021 (v1)Journal article
The twisted structures of the chitin-based cuticle of beetles confer specific optical characteristics on them. Intrigued by the observation of Bragg gratings with a depth-dependent periodicity in the cuticle of Chrysina beetles, we determine the experimental conditions leading to their transcription into cholesteric liquid-crystal oligomers. We...
Uploaded on: December 4, 2022