The chemoresistance of cancer cells is a multifactorial mechanism in which de-regulated apoptotic pathways, the oxidative response and cancer cell migration play a crucial role. A key player in the control of such pathways is the tumor suppressor gene TP53, also defined as the "guardian of the genome", encoding the P53 tetrameric transcription...
-
2020 (v1)PublicationUploaded on: February 14, 2024
-
2019 (v1)PublicationMYC Expression and Metabolic Redox Changes in Cancer Cells: A Synergy Able to Induce Chemoresistance
Chemoresistance is due to multiple factors including the induction of a metabolic adaptation of tumor cells. In fact, in these cells, stress conditions induced by therapies stimulate a metabolic reprogramming which involves the strengthening of various pathways such as glycolysis, glutaminolysis and the pentose phosphate pathway. This metabolic...
Uploaded on: April 14, 2023 -
2022 (v1)Publication
The TP53 tumor suppressor gene is one of the most studied gene in virtue of its ability to prevent cancer development by regulating apoptosis, cell cycle arrest, DNA repair, autophagy and senescence. Furthermore, the modulation of metabolism by P53 is fundamental for tumor suppressor activity. Studies in mouse models showed that mice carrying...
Uploaded on: January 31, 2024 -
2022 (v1)Publication
Purpose: To study the dimensions and distribution of human vitreous collagen type II fragments collected after vitrectomy performed at varying cut rates and to evaluate if increasing the cut rate produces smaller collagen fragments, thus reducing retinal traction and/or viscosity. Methods: Fluid was collected during core vitrectomies performed...
Uploaded on: April 14, 2023 -
2018 (v1)Publication
Drug resistance is the major obstacle in successfully treating high-risk neuroblastoma. The aim of this study was to investigate the basis of etoposide-resistance in neuroblastoma. To this end, a MYCN-amplified neuroblastoma cell line (HTLA-230) was treated with increasing etoposide concentrations and an etoposide-resistant cell line (HTLA-ER)...
Uploaded on: April 14, 2023 -
2016 (v1)Publication
Neuroblastoma, a paediatric malignant tumor, is initially sensitive to etoposide, a drug to which many patients develop chemoresistance. In order to investigate the molecular mechanisms responsible for etoposide chemoresistance, HTLA-230, a human MYCN-amplified neuroblastoma cell line, was chronically treated with etoposide at a concentration...
Uploaded on: April 14, 2023 -
2021 (v1)Publication
No description
Uploaded on: April 14, 2023