The most pristine material of the Solar System is assumed to be preserved in comets in the form of dust and ice as refractory matter. ESA's mission Rosetta and its lander Philae had been developed to investigate the nucleus of comet 67P/Churyumov-Gerasimenko in situ. Twenty-five minutes after the initial touchdown of Philae on the surface of...
-
2022 (v1)Journal articleUploaded on: November 25, 2023
-
2022 (v1)Journal article
The most pristine material of the Solar System is assumed to be preserved in comets in the form of dust and ice as refractory matter. ESA's mission Rosetta and its lander Philae had been developed to investigate the nucleus of comet 67P/Churyumov-Gerasimenko in situ. Twenty-five minutes after the initial touchdown of Philae on the surface of...
Uploaded on: December 3, 2022 -
2015 (v1)Journal article
Comets harbor the most pristine material in our solar system in the form of ice, dust, silicates, and refractory organic material with some interstellar heritage. The evolved gas analyzer Cometary Sampling and Composition (COSAC) experiment aboard Rosetta's Philae lander was designed for in situ analysis of organic molecules on comet...
Uploaded on: March 25, 2023 -
2017 (v1)Journal article
The Mars Organic Molecule Analyzer (MOMA) instrument onboard the ESA/Roscosmos ExoMars rover (to launch in July, 2020) will analyze volatile and refractory organic compounds in martian surface and subsurface sediments. In this study, we describe the design, current status of development, and analytical capabilities of the instrument. Data...
Uploaded on: February 28, 2023