Recent experiments [R. A. Gray et al., Phys. Rev. Lett. 87, 168104 (2001)] have revealed striking standing wave patterns in cardiac muscle. In excitable media, such as cardiac tissue where colliding waves annihilate, standing wave patterns result from a fully nonlinear mechanism. We present a possible physical mechanism explaining these...
-
2003 (v1)Journal articleUploaded on: December 4, 2022
-
2004 (v1)Journal article
Controlling cardiac chaos is often achieved by applying a large damaging electric shock-defibrillation. It removes all waves, without differentiating reentries and normal waves, anatomical and functional reentries. Anatomical reentries can be removed by anti-tachycardia pacing (ATP) as well. But ATP requires the knowledge of the position of the...
Uploaded on: December 4, 2022 -
2004 (v1)Journal article
Rotating waves in cardiac muscle may be pinned to a heterogeneity, as it happens in superconductors or in superfluids. We show that the physics of electric field distribution between cardiac cells permits one to deliver an electric pulse exactly to the core of a pinned wave, without knowing its position, and even to locations where a direct...
Uploaded on: December 3, 2022