Our objective is to evaluate the regional regenerative potential of calvarial bone in critical- sized defects in a rabbit model using novel nanostructured silica-loaded membranes doped with zinc or doxycycline. Nanostructured membranes of (MMA)1-co-(HEMA)1/(MA)3-co-(HEA)2 loaded with 5 wt% of SiO2 nanoparticles (HOOC-Si-Membranes) were doped...
-
February 6, 2024 (v1)PublicationUploaded on: February 11, 2024
-
July 5, 2021 (v1)Publication
Barrier membranes are employed in guided bone regeneration (GBR) to facilitate bone in-growth. A bioactive and biomimetic Zn-doped membrane with the ability to participate in bone healing and regeneration is necessary. The aim of the present study is to state the effect of doping the membranes for GBR with zinc compounds in the improvement of...
Uploaded on: December 4, 2022 -
July 6, 2023 (v1)Publication
Native collagen-based membranes are used to guide bone regeneration; but due to their rapid biodegradation, this treatment is often unpredictable. The purpose of this study was to investigate the biodegradability of natural collagen membranes. Three non-cross-linked resorbable collagen barrier membranes were tested: Derma Fina (porcine dermis),...
Uploaded on: July 7, 2023 -
August 18, 2020 (v1)Publication
Themain target of bone tissue engineeringis to design biomaterials that support bone regeneration and vascularization. Nanostructured membranes of (MMA)1-co-(HEMA)1/(MA)3-co-(HEA)2 loaded with 5% wt of SiO2-nanoparticles (HOOC-Si-Membrane) were doped with zinc (Zn-HOOC-Si-Membrane) or doxycycline (Dox-HOOC-Si-Membrane). Critical bone defects...
Uploaded on: December 4, 2022 -
December 29, 2023 (v1)Publication
Objective The aim of this study was to evaluate the bone-regeneration efficiency of novel polymeric nanostructured membranes and the effect of zinc, calcium, titanium, and bone morpho-protein loading on membranes, through an in vivo rabbit model. Material and methods Nanostructured membranes of methylmethacrylate were loaded with zinc, calcium,...
Uploaded on: December 31, 2023