The study of functional connectivity from magnetoecenphalographic (MEG) data consists of quantifying the statistical dependencies among time series describing the activity of different neural sources from the magnetic field recorded outside the scalp. This problem can be addressed by utilizing connectivity measures whose computation in the...
-
2021 (v1)PublicationUploaded on: April 14, 2023
-
2020 (v1)Publication
We consider the problem of reconstructing the cross-power spectrum of an unobservable multivariate stochastic process from indirect measurements of a second multivariate stochastic process, related to the first one through a linear operator. In the two-step approach, one would first compute a regularized reconstruction of the unobservable...
Uploaded on: April 14, 2023 -
2022 (v1)Publication
A classic approach to estimate individual theta-to-alpha transition frequency (TF) requires two electroencephalographic (EEG) recordings, one acquired in a resting state condition and one showing alpha desynchronisation due, for example, to task execution. This translates into long recording sessions that may be cumbersome in studies involving...
Uploaded on: February 4, 2024 -
2023 (v1)Publication
: The accurate characterization of cortical functional connectivity from Magnetoencephalography (MEG) data remains a challenging problem due to the subjective nature of the analysis, which requires several decisions at each step of the analysis pipeline, such as the choice of a source estimation algorithm, a connectivity metric and a cortical...
Uploaded on: February 4, 2024