The structure of solid and liquid electrodes strongly affects the performance of Lithium batteries and of Semi-solid Redox-Flow cells. Thus understanding the formation of the structure of electrodes is an important issue. This paper proposes to study the aggregation processes that occur in electrode slurries by means of numerical simulations....
-
2015 (v1)PublicationUploaded on: April 14, 2023
-
2017 (v1)Publication
The aggregation of oppositely charged colloids, usually denoted as heteroaggregation, is often used in colloidal processing, for which a precise control of the basic mechanisms of aggregate formation is of crucial importance. A promising way to achieve a better degree of control is to guide heteroaggregation by imposing geometric constraints....
Uploaded on: April 14, 2023 -
2017 (v1)Publication
We employ the reverse non-equilibrium molecular dynamics method (RNEMD) of Müller-Plathe [Phys. Rev. E, 1999, 59, 4894] to calculate the shear viscosity of colloidal suspensions within the stochastic rotation dynamics-molecular dynamics (SRD-MD) simulation method. We examine the influence of different coupling schemes in SRD-MD on the colloidal...
Uploaded on: April 14, 2023 -
2018 (v1)Publication
Hypothesis Hetero-aggregation of inorganic colloids is influenced by numerous parameters, which dictate the suspension properties. When particles are different in size, the suspension can be either stable or unstable according to concentration of components, ionic strength, and pH. Experimentally, understanding the role of each parameter is...
Uploaded on: April 14, 2023 -
2024 (v1)Publication
The formation of colloidal crystals is of interest in many fields, especially because of their optical properties. These properties are dictated by the colloidal arrangement. It is known that introducing particles with different sizes can change the structure of crystals and thus their resultant optical properties. To better understand how...
Uploaded on: October 15, 2024 -
2023 (v1)Publication
The solidification of AgCo, AgNi, and AgCu nanodroplets is studied by molecular dynamics simulations in the size range of 2-8 nm. All these systems tend to phase separate in the bulk solid with surface segregation of Ag. Despite these similarities, the simulations reveal clear differences in the solidification pathways. AgCo and AgNi already...
Uploaded on: February 14, 2024