Cardiac MRI is widely used by cardiologists as it allows extracting rich information from images. However, if done manually, the information extraction process is tedious and time-consuming. Given the advance of artificial intelligence, I develop deep learning methods to address the automation of several essential tasks on cardiac MRI analysis....
-
March 27, 2019 (v1)PublicationUploaded on: December 4, 2022
-
2019 (v1)Journal article
We propose a method to classify cardiac pathology based on a novel approach to extract image derived features to characterize the shape and motion of the heart. An original semi-supervised learning procedure, which makes efficient use of a large amount of non-segmented images and a small amount of images segmented manually by experts , is...
Uploaded on: December 4, 2022 -
March 30, 2018 (v1)Publication
We present a novel automated method to segment the my-ocardium of both left and right ventricles in MRI volumes. The segmen-tation is consistent in 3D across the slices such that it can be directly used for mesh generation. Two specific neural networks with multi-scale coarse-to-fine prediction structure are proposed to cope with the small...
Uploaded on: March 25, 2023 -
April 18, 2018 (v1)Journal article
We propose a method based on deep learning to perform cardiac segmentation on short axis MRI image stacks iteratively from the top slice (around the base) to the bottom slice (around the apex). At each iteration, a novel variant of U-net is applied to propagate the segmentation of a slice to the adjacent slice below it. In other words, the...
Uploaded on: February 27, 2023 -
November 16, 2020 (v1)Journal article
We perform unsupervised analysis of image-derived shape and motion features extracted from 3,822 cardiac Magnetic resonance imaging (MRIs) of the UK Biobank. First, with a feature extraction method previously published based on deep learning models, we extract from each case 9 feature values characterizing both the cardiac shape and motion....
Uploaded on: December 4, 2022