Published July 2, 2018
| Version v1
Conference paper
The 2018 Signal Separation Evaluation Campaign
Contributors
Others:
- Scientific Data Management (ZENITH) ; Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM) ; Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Centre Inria d'Université Côte d'Azur (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- NTT Communication Science Laboratories ; NTT Corporation
- Deville Y.
- Gannot S.
- Mason R.
- Plumbley M.
- Ward D.
- ANR-15-CE38-0003,KAMoulox,Démixage en ligne de larges archives sonores(2015)
Description
This paper reports the organization and results for the 2018 community-based Signal Separation Evaluation Campaign (SiSEC 2018). This year's edition was focused on audio and pursued the effort towards scaling up and making it easier to prototype audio separation software in an era of machine-learning based systems. For this purpose, we prepared a new music separation database: MUSDB18, featuring close to 10 h of audio. Additionally, open-source software was released to automatically load, process and report performance on MUSDB18. Furthermore, a new official Python version for the BSS Eval toolbox was released, along with reference implementations for three oracle separation methods: ideal binary mask, ideal ratio mask, and multichannel Wiener filter. We finally report the results obtained by the participants.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal-lirmm.ccsd.cnrs.fr/lirmm-01766791
- URN
- urn:oai:HAL:lirmm-01766791v2
Origin repository
- Origin repository
- UNICA