Published March 16, 2024 | Version v1
Journal article

Optimization of Ganciclovir and Valganciclovir Starting Dose in Children by Machine Learning

Others:
Ciblage individuel et prévention des risques de traitements immunosupresseurs et de la transplantation (IPPRITT) ; CHU Limoges-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut Génomique, Environnement, Immunité, Santé, Thérapeutique (GEIST) ; Université de Limoges (UNILIM)-Université de Limoges (UNILIM)
CHU Limoges
Université de Montréal (UdeM)
Centre d'Investigation Clinique [Rennes] (CIC) ; Université de Rennes (UR)-Centre Hospitalier Universitaire de Rennes [CHU Rennes] = Rennes University Hospital [Pontchaillou]-Institut National de la Santé et de la Recherche Médicale (INSERM)
Institut de recherche en santé, environnement et travail (Irset) ; Université d'Angers (UA)-Université de Rennes (UR)-École des Hautes Études en Santé Publique [EHESP] (EHESP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Structure Fédérative de Recherche en Biologie et Santé de Rennes (Biosit : Biologie - Santé - Innovation Technologique)
Centre Hospitalier Universitaire de Rennes [CHU Rennes] = Rennes University Hospital [Pontchaillou]
University of Oslo (UiO)
CHU Sainte Justine [Montréal]
Centre Hospitalier Universitaire de Nice (CHU Nice)
Modèles et algorithmes pour l'intelligence artificielle (MAASAI) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Laboratoire Jean Alexandre Dieudonné (LJAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)-Scalable and Pervasive softwARe and Knowledge Systems (Laboratoire I3S - SPARKS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)-Centre National de la Recherche Scientifique (CNRS)
Pharmacologie et Transplantation (P&T) ; CHU Limoges-Institut National de la Santé et de la Recherche Médicale (INSERM)-OmégaHealth (ΩHealth) ; Université de Limoges (UNILIM)-Université de Limoges (UNILIM)
Service de Pharmacologie, toxicologie et pharmacovigilance [CHU Limoges] ; CHU Limoges

Description

Background and objectives: Ganciclovir (GCV) and valganciclovir (VGCV) show large interindividual pharmacokinetic variability, particularly in children. The objectives of this study were (1) to develop machine learning (ML) algorithms trained on simulated pharmacokinetics profiles obtained by Monte Carlo simulations to estimate the best ganciclovir or valganciclovir starting dose in children and (2) to compare its performances on real-world profiles to previously published equation derived from literature population pharmacokinetic (POPPK) models achieving about 20% of profiles within the target.Materials and methods: The pharmacokinetic parameters of four literature POPPK models in addition to the World Health Organization (WHO) growth curve for children were used in the mrgsolve R package to simulate 10,800 pharmacokinetic profiles. ML algorithms were developed and benchmarked to predict the probability to reach the steady-state, area-under-the-curve target (AUC0-24 within 40-60 mg × h/L) based on demographic characteristics only. The best ML algorithm was then used to calculate the starting dose maximizing the target attainment. Performances were evaluated for ML and literature formula in a test set and in an external set of 32 and 31 actual patients (GCV and VGCV, respectively).Results: A combination of Xgboost, neural network, and random forest algorithms yielded the best performances and highest target attainment in the test set (36.8% for GCV and 35.3% for the VGCV). In actual patients, the best GCV ML starting dose yielded the highest target attainment rate (25.8%) and performed equally for VGCV with the Franck model formula (35.3% for both).Conclusion: The ML algorithms exhibit good performances in comparison with previously validated models and should be evaluated prospectively.

Abstract

International audience

Additional details

Created:
September 19, 2024
Modified:
September 19, 2024