Published 2007
| Version v1
Report
Stability of boundary measures
Contributors
Others:
- Geometric computing (GEOMETRICA) ; INRIA Futurs ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre Inria d'Université Côte d'Azur (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)
- Geometric computing (GEOMETRICA) ; Centre Inria d'Université Côte d'Azur (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre Inria de Saclay ; Institut National de Recherche en Informatique et en Automatique (Inria)
- INRIA
Description
We introduce the boundary measure at scale r of a compact subset of the n-dimensional Euclidean space. We show how it can be computed for point clouds and suggest these measures can be used for feature detection. The main contribution of this work is the proof a quantitative stability theorem for boundary measures using tools of convex analysis and geometric measure theory. As a corollary we obtain a stability result for Federer's curvature measures of a compact, allowing to compute them from point-cloud approximations of the compact.
Additional details
Identifiers
- URL
- https://inria.hal.science/inria-00154798
- URN
- urn:oai:HAL:inria-00154798v2
Origin repository
- Origin repository
- UNICA