Depth-Adapted CNN for RGB-D cameras
- Others:
- Equipe VIBOT - VIsion pour la roBOTique [ImViA EA7535 - ERL CNRS 6000] (VIBOT) ; Centre National de la Recherche Scientifique (CNRS)-Imagerie et Vision Artificielle [Dijon] (ImViA) ; Université de Bourgogne (UB)-Université de Bourgogne (UB)
- Signal, Images et Systèmes (Laboratoire I3S - SIS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- ANR-18-CE33-0004,CLARA,Couplage Apprentissage et Vision pour Contrôle de Robots Aeriens(2018)
Description
Conventional 2D Convolutional Neural Networks (CNN) extract features from an input image by applying linear filters. These filters compute the spatial coherence by weighting the photometric information on a fixed neighborhood without taking into account the geometric information. We tackle the problem of improving the classical RGB CNN methods by using the depth information provided by the RGB-D cameras. State-of-the-art approaches use depth as an additional channel or image (HHA) or pass from 2D CNN to 3D CNN. This paper proposes a novel and generic procedure to articulate both photometric and geometric information in CNN architecture. The depth data is represented as a 2D offset to adapt spatial sampling locations. The new model presented is invariant to scale and rotation around the X and the Y axis of the camera coordinate system. Moreover, when depth data is constant, our model is equivalent to a regular CNN. Experiments of benchmarks validate the effectiveness of our model.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-02946902
- URN
- urn:oai:HAL:hal-02946902v1
- Origin repository
- UNICA