A minimax near-optimal algorithm for adaptive rejection sampling
- Others:
- Laboratoire de Mathématiques d'Orsay (LMO) ; Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Understanding the Shape of Data (DATASHAPE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Inria Saclay - Ile de France ; Institut National de Recherche en Informatique et en Automatique (Inria)
- Institut für Mathematik [Potsdam] ; University of Potsdam = Universität Potsdam
- numberly (1000mercis Group)
- Otto-von-Guericke-Universität Magdeburg = Otto-von-Guericke University [Magdeburg] (OVGU)
- Aurélien Garivier, Satyen Kale
Description
Rejection Sampling is a fundamental Monte-Carlo method. It is used to sample from distributions admitting a probability density function which can be evaluated exactly at any given point, albeit at a high computational cost. However, without proper tuning, this technique implies a high rejection rate. Several methods have been explored to cope with this problem, based on the principle of adaptively estimating the density by a simpler function, using the information of the previous samples. Most of them either rely on strong assumptions on the form of the density, or do not offer any theoretical performance guarantee. We give the first theoretical lower bound for the problem of adaptive rejection sampling and introduce a new algorithm which guarantees a near-optimal rejection rate in a minimax sense.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-03371169
- URN
- urn:oai:HAL:hal-03371169v1
- Origin repository
- UNICA