Published September 23, 2024 | Version v1
Publication

Nitrogen Nanobubbles in a-SiOxNy Coatings: Evaluation of Its Physical Properties and Chemical Bonding State by Spatially Resolved Electron Energy-Loss Spectroscopy

Description

Nanoporous silicon-based materials with closed porosity filled with the sputtering gas have been recently developed by magnetron sputtering. In this work the physical properties (density and pressure) of molecular nitrogen inside closed pores in a SiOxNy coating are investigated for the first time using spatially resolved electron energy-loss spectroscopy (EELS) in a scanning transmission electron microscope. The paper offers a detailed methodology to record and process multiple EELS spectrum images (SIs) acquired at different energy ranges and with different dwell times. An adequate extraction and quantification of the N–K edge contribution due to the molecular nitrogen inside nanopores is demonstrated. Core-loss intensity and N chemical bond state were evaluated to retrieve 2D maps revealing the stable high density of molecular nitrogen (from 40 to 70 at./nm3) in nanopores of different size (20–11 nm). This work provides new insights into the quantification of molecular N2 trapped in porous nitride matrices that could also be applied to other systems.

Abstract

European Union CT-REGPOT-2011-1-285895

Abstract

the Spanish Ministry MINECO CTQ2012-32519

Abstract

CSIC (PIE 201460E018)

Abstract

Junta de Andalucía (FEDER PE2012-TEP862 and TEP217)

Additional details

Created:
September 24, 2024
Modified:
September 24, 2024