Published December 2017
| Version v1
Conference paper
Joint distribution optimal transportation for domain adaptation
Contributors
Others:
- Laboratoire de Recherche en Informatique et ses Applications de Vannes et Lorient (VALORIA) ; Université de Bretagne Sud (UBS)
- Observatoire de la Côte d'Azur (OCA) ; Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Laboratoire Hubert Curien [Saint Etienne] (LHC) ; Institut d'Optique Graduate School (IOGS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS)
- Equipe Apprentissage (DocApp - LITIS) ; Laboratoire d'Informatique, de Traitement de l'Information et des Systèmes (LITIS) ; Université Le Havre Normandie (ULH) ; Normandie Université (NU)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN) ; Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie) ; Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Université Le Havre Normandie (ULH) ; Normandie Université (NU)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN) ; Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie) ; Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)
Description
This paper deals with the unsupervised domain adaptation problem, where one wants to estimate a prediction function f in a given target domain without any labeled sample by exploiting the knowledge available from a source domain where labels are known. Our work makes the following assumption: there exists a non-linear transformation between the joint feature/label space distributions of the two domain P s and P t that can be estimated with optimal transport. We propose a solution of this problem that allows to recover an estimated target P f t = (X, f (X)) by optimizing simultaneously the optimal coupling and f. We show that our method corresponds to the minimization of a bound on the target error, and provide an efficient algorithmic solution, for which convergence is proved. The versatility of our approach, both in terms of class of hypothesis or loss functions is demonstrated with real world classification and regression problems, for which we reach or surpass state-of-the-art results.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.science/hal-01620589
- URN
- urn:oai:HAL:hal-01620589v1
Origin repository
- Origin repository
- UNICA