Preferential oxidation of CO over Au/CuOx-CeO2 catalyst in microstructured reactors studied through CFD simulations
Description
A computational fluid dynamics (CFD) simulation study of the preferential oxidation of CO (CO-PROX) in microstructured reactors consisting in square and semicircular microchannels coated with anAu/CuOx¿CeO2catalyst is presented. The CO content of the feed stream was set at 1 vol.%. A parametricsensitivity analysis has been performed under isothermal conditions revealing that an optimal reactiontemperature exists that leads to a minimum CO content at the microreactor exit. The influence of thespace velocity, CO2concentration and oxygen-to-CO molar ratio in the feed stream (), catalyst loading,and microchannel characteristic dimension (d) on the microreactor performance has been investigated.Under suitable conditions, the CO concentration can be reduced below 10 ppm at relatively low tem-peratures within the 155¿175¿C range. A negative effect of the increase of d from 0.35 mm to 2.8 mmon the CO removal efficiency has been found and attributed to a more detrimental effect of the masstransport limitations on the oxidation of CO than that of H2. Non-isothermal CFD simulations have beenperformed to investigate the cooling of the CO-PROX reactor with air or a fuel cell anode off gas surrogatein parallel microchannels. Due to the very rapid heat transfer allowed by the microreactor and the stronginfluence of the reaction temperature on the exit CO concentration, a careful control of the coolant flowrate and inlet temperature is required for proper reactor operation. The microreactor behavior is virtuallyisothermal.
Abstract
Ministerio de Ciencia e Innovación ENE2009-14522-C04
Abstract
Ministerio de Economía y Competitividad ENE2012-37431-C03
Additional details
- URL
- https://idus.us.es/handle//11441/70418
- URN
- urn:oai:idus.us.es:11441/70418
- Origin repository
- USE