Published June 2021 | Version v1
Journal article

Modeling the self-propagation reaction in heterogeneous and dense media: Application to Al/CuO thermite

Others:
Équipe Nano-ingénierie et intégration des oxydes métalliques et de leurs interfaces (LAAS-NEO) ; Laboratoire d'analyse et d'architecture des systèmes (LAAS) ; Université Toulouse 1 Capitole (UT1) ; Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse) ; Institut National des Sciences Appliquées (INSA)-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3) ; Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse 1 Capitole (UT1) ; Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse) ; Institut National des Sciences Appliquées (INSA)-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3) ; Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université Fédérale Toulouse Midi-Pyrénées
C. Rossi received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 832889 -PyroSafe).

Citation

An error occurred while generating the citation.

Description

This article provides a computational analysis of the reaction of fully-dense layered aluminum and copper oxide systems. After the detailed presentation of the 2D nonstationary model implementing both oxygen and aluminum diffusion, the propagation of the reaction front in an Al/CuO thin film was studied. The model qualitatively reproduces the dependency of the reaction front progression rate spatially as a function of the fuel concentration. Calculations also evidence the inverse evolution of flame front width with respect to the reaction front velocity. A procedure to estimate the heat loss generated by the fact that the reactants and products may vaporize prior to reaction completion was proposed by imposing a flame temperature limit close to Cu vaporization point. This work also shows that microscopic fluctuations in the instantaneous reaction front velocity can be observed for reactant diffusion activation energy (Ea) of 125 kJ/mol, before quenching for greater Ea. Finally, we demonstrate the potential of this new 2D nonstationary model to investigate the thermal effect of additives such as metallic impurities in the Al/CuO thin film that can lead to the flame front corrugation at the microscale. The simulations show that a metallic particle acts first to boost the reaction velocity as its high thermal conductivity helps the upfront heating. Then, the particle being also a heat sink, a local slowing down of the front velocity is observed.

Abstract

International audience

Additional details

Created:
December 4, 2022
Modified:
November 30, 2023