Published May 7, 2018 | Version v1
Publication

Nanosilica supported CaO: A regenerable and mechanically hard CO2 sorbent at Ca-looping conditions

Description

This work presents a CO2 sorbent that may be synthesized from low-cost and widely available materials following a simple method basically consisting of impregnation of a nanostructured silica support with a saturated solution of calcium nitrate. In a first impregnation stage, the use of a stoichiometric CaO/SiO2 ratio serves to produce a calcium silicate matrix after calcination. This calcium silicate matrix acts as a thermally stable and mechanically hard support for CaO deposited on it by further impregnation. The CaO-impregnated sorbent exhibits a stable CaO conversion at Ca-looping conditions whose value depends on the CaO wt% deposited on the calcium silicate matrix, which can be increased by successive reimpregnations. A 10wt% CaO impregnated sorbent reaches a stable conversion above 0.6 whereas the stable conversion of a 30wt% CaO impregnated sorbent is around 0.3, which is much larger than the residual conversion of CaO derived from natural limestone (between 0.07 and 0.08). Moreover, particle size distribution measurements of samples predispersed in a liquid and subjected to high energy ultrasonic waves indicate that the CaO-impregnated sorbent has a relatively high mechanical strength as compared to limestone derived CaO

Abstract

Junta de Andalucia FQM-5735

Abstract

España Ministerio de Ciencia e Innovación FIS2011-25161 CTQ2011-27626

Additional details

Identifiers

URL
https://idus.us.es/handle//11441/74165
URN
urn:oai:idus.us.es:11441/74165

Origin repository

Origin repository
USE