Published 2013
| Version v1
Journal article
Markov approximation of chains of infinite order in the $\bar{d}$-metric
- Others:
- Instituto de Matemática da Universidade Federal do Rio de Janeiro (IM / UFRJ) ; Universidade Federal do Rio de Janeiro (UFRJ)
- Laboratoire Jean Alexandre Dieudonné (LJAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Ghazanfar's Lab ; Princeton University
Description
We derive explicit upper bounds for the d-distance between a chain of in nite order and its canonical k-steps Markov approximation. Our proof is entirely construc- tive and involves a \coupling from the past" argument. The new method covers non necessarily continuous probability kernels, and chains with null transition probabilities. These results imply in particular the Bernoulli property for these processes.
Abstract
International audience
Additional details
- URL
- https://hal.science/hal-00913858
- URN
- urn:oai:HAL:hal-00913858v1
- Origin repository
- UNICA