Published 2022
| Version v1
Journal article
An exact Solution for some Riemann Problems of the shear shallow water model
Creators
Contributors
Others:
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Control, Analysis and Simulations for TOkamak Research (CASTOR) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Center for Applicable Mathematics [Bangalore] (TIFR-CAM) ; Tata Institute for Fundamental Research (TIFR)
- Praveen Chandrashekar's work is supported by the Department of Atomic Energy, Government of India, under project no. 12-R&D-TFR-5.01-0520. Boniface Nkonga's work is also supported by the INRIA associated Team AMFoDUC. T
- ANR-15-IDEX-0001,UCA JEDI,Idex UCA JEDI(2015)
Description
The shear shallow water model is a higher order model for shallow flows which includes some shear effects that are neglected in the classical shallow models. The model is a non-conservative hyperbolic system which can admit shocks, rarefactions, shear and contact waves. The notion of weak solution is based on a path but the choice of the correct path is not known for this problem. In this paper, we construct exact solution for the Riemann problem assuming a linear path in the space of conserved variables, which is also used in approximate Riemann solvers. We compare the exact solutions with those obtained from a path conservative finite volume scheme on some representative test cases.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.inria.fr/hal-03603315
- URN
- urn:oai:HAL:hal-03603315v1
Origin repository
- Origin repository
- UNICA