Investigation of time-reversal processing for surface-penetrating radar detection in a multiple-target configuration
- Others:
- Laboratoire d'Electronique, Antennes et Télécommunications (LEAT) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
- Department of Electrical and Computer Engineering ; University of British Columbia (UBC)
Description
This paper presents detection and imaging capabilities of a simple time-reversal focusing algorithm, applied to experimental data that are obtained under various radar scene configurations (single- or multiple-target in free-space or through-the-wall). Data are collected with the ultra-wideband surface penetrating radar SIMIS (Synthetic-Impulse Microwave Imaging System, designed in LEAT) which operates almost from dc up to 18 GHz. The algorithm propagates time-reversed received signals in a supposedly known medium (either free-space or through a wall with known parameters) using a simple dipole model for the antennas. At each time step, an image of the scene is obtained, corresponding to the instantaneous electric-field energy in each pixel. A focusing criterion, looking for a minimum of entropy combined with a maximum of energy in the image, automatically selects the optimum frame, shown here. Two free-space (dielectric target, dielectric and metallic target) and one through-the-wall (dielectric target) configurations are investigated, showing the efficiency of the method.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-00336503
- URN
- urn:oai:HAL:hal-00336503v1
- Origin repository
- UNICA