Published 2023 | Version v1
Journal article

Optimal Change-Point Detection and Localization

Others:
Mathématiques, Informatique et STatistique pour l'Environnement et l'Agronomie (MISTEA) ; Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE)-Institut Agro Montpellier ; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)
Institut de Recherche Mathématique de Rennes (IRMAR) ; Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes) ; Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut Agro Rennes Angers ; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)
Université de Rennes 2 (UR2)
Ecole Nationale de la Statistique et de l'Analyse Economique (ENSAE) ; Ecole Nationale de la Statistique et de l'Analyse Economique
IA coopérative : équité, vie privée, incitations (FAIRPLAY) ; Centre de Recherche en Économie et Statistique (CREST) ; Ecole Nationale de la Statistique et de l'Analyse de l'Information [Bruz] (ENSAI)-École polytechnique (X)-École Nationale de la Statistique et de l'Administration Économique (ENSAE Paris)-Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale de la Statistique et de l'Analyse de l'Information [Bruz] (ENSAI)-École polytechnique (X)-École Nationale de la Statistique et de l'Administration Économique (ENSAE Paris)-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut Polytechnique de Paris (IP Paris)-Criteo AI Lab ; Criteo [Paris]-Criteo [Paris]
Laboratoire Jean Alexandre Dieudonné (LJAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Neuromod Institute ; Université Côte d'Azur (UCA)
ANR-19-P3IA-0002,3IA@cote d'azur,3IA Côte d'Azur(2019)
ANR-15-IDEX-0001,UCA JEDI,Idex UCA JEDI(2015)
ANR-19-CE40-0024,ChaMaNe,Enjeux mathématiques issus des neurosciences(2019)

Description

Given a times series Y in R n , with a piece-wise contant mean and independent components, the twin problems of change-point detection and change-point localization respectively amount to detecting the existence of times where the mean varies and estimating the positions of those change-points. In this work, we tightly characterize optimal rates for both problems and uncover the phase transition phenomenon from a global testing problem to a local estimation problem. Introducing a suitable definition of the energy of a change-point, we first establish in the single change-point setting that the optimal detection threshold is 2 log log(n). When the energy is just above the detection threshold, then the problem of localizing the change-point becomes purely parametric: it only depends on the difference in means and not on the position of the change-point anymore. Interestingly, for most change-point positions, including all those away from the endpoints of the time series, it is possible to detect and localize them at a much smaller energy level. In the multiple change-point setting, we establish the energy detection threshold and show similarly that the optimal localization error of a specific change-point becomes purely parametric. Along the way, tight optimal rates for Hausdorff and l 1 estimation losses of the vector of all change-points positions are also established. Two procedures achieving these optimal rates are introduced. The first one is a least-squares estimator with a new multiscale penalty that favours well spread change-points. The second one is a two-step multiscale post-processing procedure whose computational complexity can be as low as O(n log(n)). Notably, these two procedures accommodate with the presence of possibly many low-energy and therefore undetectable change-points and are still able to detect and localize high-energy change-points even with the presence of those nuisance parameters.

Abstract

International audience

Additional details

Created:
November 25, 2023
Modified:
November 25, 2023