Published 2019
| Version v1
Journal article
Optimal control of bacterial growth for the maximization of metabolite production
Contributors
Others:
- North Dakota State University (NDSU)
- Physiologie et biotechnologie des Algues (PBA) ; Biotechnologies et Ressources Marines (BRM) ; Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)
- Modeling, simulation, measurement, and control of bacterial regulatory networks (IBIS) ; Laboratoire Adaptation et pathogénie des micro-organismes [Grenoble] (LAPM) ; Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Inria Grenoble - Rhône-Alpes ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut Jean Roget
- Biological control of artificial ecosystems (BIOCORE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de la Recherche Agronomique (INRA)-Laboratoire d'océanographie de Villefranche (LOV) ; Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de la Mer de Villefranche (IMEV) ; Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de la Mer de Villefranche (IMEV) ; Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)
- PIA project Reset [ANR-11-BINF-0005]; ANR project Maximic [ANR-17-CE40-0024-01]; Labex SIGNALIFE [ANR-11-LABX-0028-01]; Inria IPL AlgaeInSilico
Description
Microorganisms have evolved complex strategies for controlling the distribution of available resources over cellular functions. Biotechnology aims at interfering with these strategies, so as to optimize the production of metabo-lites and other compounds of interest, by (re)engineering the underlying regulatory networks of the cell. The resulting reallocation of resources can be described by simple so-called self-replicator models and the maximization of the synthesis of a product of interest formulated as a dynamic optimal control problem. Motivated by recent experimental work, we are specifically interested in the maximization of metabolite production in cases where growth can be switched off through an external control signal. We study various optimal control problems for the corresponding self-replicator models by means of a combination of analytical and computational techniques. We show that the optimal solutions for biomass maximization and product maximization are very similar in the case of unlimited nutrient supply, but diverge when nutrients are limited. Moreover, external growth control overrides natural feedback growth control and leads to an optimal scheme consisting of a first phase of growth maximization followed by a second phase of product maximization. This two-phase scheme agrees with strategies that have been proposed in metabolic engineering. More generally, our work shows the potential of optimal control I. Yegorov () North 2 I. Yegorov et al. theory for better understanding and improving biotechnological production processes.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.inria.fr/hal-01929475
- URN
- urn:oai:HAL:hal-01929475v1
Origin repository
- Origin repository
- UNICA