Published June 2012 | Version v1
Conference paper

Dense RGB-D mapping of large scale environments for real-time localisation and autonomous navigation

Others:
Advanced Image Understanding and Autonomous Systems (AROLAG) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Laboratoire d'Informatique, Signaux, et Systèmes de Sophia-Antipolis (I3S) / Equipe SYSTEMES ; Signal, Images et Systèmes (Laboratoire I3S - SIS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
ANR-07-TSFA-0013,CITYVIP,Déplacement sûr de véhicules individuels adaptés à l'environnement urbain(2007)

Description

This paper presents a method and apparatus for building 3D dense visual maps of large scale environments for real-time localisation and autonomous navigation. We propose a spherical ego-centric representation of the environment which is able to reproduce photo-realistic omnidirectional views of captured environments. This representation is composed of a graph of locally accurate augmented spherical panoramas that allows to generate varying viewpoints through novel view synthesis. The spheres are related by a graph of 6 d.o.f. poses which are estimated through multi-view spherical registration. It is shown that this representation can be used to accurately localise a vehicle navigating within the spherical graph, using only a monocular camera for accurate localisation. To perform this task, an efficient direct image registration technique is employed. This approach directly exploits the advantages of the spherical representation by minimising a photometric error between a current image and a reference sphere. Autonomous navigation results are shown in challenging urban environ- ments, containing pedestrians and other vehicles.

Abstract

International audience

Additional details

Created:
December 2, 2022
Modified:
December 1, 2023