Published April 26, 2017
| Version v1
Publication
On the Takens-Bogdanov Bifurcation in the Chua's Equation
Description
The analysis of the Takens-Bogdanov bifurcation of the equilibrium at the origin in the Chua's equation with a cubic nonlinearity is carried out. The local analysis provides, in first approximation, different bifurcation sets, where the presence of several dynamical behaviours (including periodic, homoclinic and heteroclinic orbits) is predicted. The local results are used as a guide to apply the adequate numerical methods to obtain a global understanding of the bifurcation sets. The study of the normal form of the Takens-Bogdanov bifurcation shows the presence of a degenerate (codimension-three) situation, which is analyzed in both homoclinic and heteroclinic cases.
Additional details
- URL
- https://idus.us.es/handle/11441/58672
- URN
- urn:oai:idus.us.es:11441/58672
- Origin repository
- USE