Published February 23, 2017
| Version v1
Publication
Analysis of the Influence of Starting Materials and Processing Conditions on the Properties of W/Cu Alloys
Description
In this work, a study of the influence of the starting materials and the processing time used
to developW/Cu alloys is carried out. Regarding powder metallurgy as a promising fabrication route,
the difficulties in producingW/Cu alloys motivated us to investigate the influential factors on the final
properties of the most industrially demanding alloys: 85-W/15-Cu, 80-W/20-Cu, and 75-W/25-Cu
alloys. Two different tungsten powders with large variation among their particle size—fine (Wf) and
coarse (Wc) powders—were used for the preparation ofW/Cu alloys. Three weight ratios of fine and
coarse (Wf:Wc) tungsten particles were analyzed. These powders were labelled as "tungsten bimodal
powders". The powder blends were consolidated by rapid sinter pressing (RSP) at 900 C and 150MPa,
and were thus sintered and compacted simultaneously. The elemental powders andW/Cu alloys were
studied by optical microscopy (OM) and scanning electron microscopy (SEM). Thermal conductivity,
hardness, and densification were measured. Results showed that the synthesis ofW/Cu using bimodal
tungsten powders significantly affects the final alloy properties. The higher the tungsten content,
the more noticeable the effect of the bimodal powder. The best bimodalWpowder was the blend with
10 wt % of fine tungsten particles (10-Wf:90-Wc). These specimens present good values of densification
and hardness, and higher values of thermal conductivity than other bimodal mixtures.
Abstract
Junta de Andalucía TIC-7528Additional details
Identifiers
- URL
- https://idus.us.es/handle/11441/54750
- URN
- urn:oai:idus.us.es:11441/54750
Origin repository
- Origin repository
- USE