Optimal feedback strategies for bacterial growth with degradation, recycling and effect of temperature
- Creators
- Yegorov, Ivan
- Mairet, Francis
- Gouzé, Jean-Luc
- Others:
- Biological control of artificial ecosystems (BIOCORE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de la Recherche Agronomique (INRA)-Laboratoire d'océanographie de Villefranche (LOV) ; Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de la Mer de Villefranche (IMEV) ; Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de la Mer de Villefranche (IMEV) ; Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)
- project RESET Bioinformatique [ANR-11-BINF-0005] ; program LABEX SIGNALIFE [ANR-11-LABX-0028-01]
Description
For both fundamental biology and engineering applications, it is relevant to investigate how microorganisms adapt to changing environmental conditions. In this work, we consider a continuous-timedynamic problem of resource allocation between metabolic and gene expression machineries for a self-replicating prokaryotic cell population. In compliance with evolutionary principles, the criterion is tomaximize the accumulated structural biomass. In the model, we include both degradation of proteins into amino acids and recycling of the latter (i. e., using as precursors again). Based on the analyticalinvestigation of our problem by Pontryagin's maximum principle, we develop a numerical algorithm for approximating the switching curve of the optimal feedback control strategy. The obtained field of extremal state trajectories consists of chattering arcs and one steady-state singular arc. The constructed feedback control law can serve as a benchmark for comparing actual bacterial strategies of resource allocation. We also study the influence of temperature, whose increaseintensifies protein degradation. While the growth rate suddenly decreases with the increase of temperature in a certain range, the optimal control synthesis appears to be essentially less sensitive.
Abstract
Ivan Yegorov: also known as Ivan Egorov
Abstract
International audience
Additional details
- URL
- https://hal.inria.fr/hal-01655960
- URN
- urn:oai:HAL:hal-01655960v1
- Origin repository
- UNICA