Bregman Vantage Point Trees for Efficient Nearest Neighbor Queries
- Creators
- Nielsen, Frank
- Piro, Paolo
- Barlaud, Michel
- Others:
- Laboratoire d'informatique de l'École polytechnique [Palaiseau] (LIX) ; École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)
- Laboratoire d'Informatique, Signaux, et Systèmes de Sophia-Antipolis (I3S) / Equipe IMAGES-CREATIVE ; Signal, Images et Systèmes (Laboratoire I3S - SIS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Description
Nearest Neighbor (NN) retrieval is a crucial tool of many computer vision tasks. Since the brute-force naive search is too time consuming for most applications, several tailored data structures have been proposed to improve the efficiency of NN search. Among these, vantage point tree (vp-tree) was introduced for information retrieval in metric spaces. Vptrees have recently shown very good performances for image patch retrieval with respect to the L2 metric. In this paper we generalize the seminal vp-tree construction and search algorithms to the broader class of Bregman divergences. These distorsion measures are preferred in many cases, as they also handle entropic distances (e.g., Kullback-Leibler divergence) besides quadratic distances. We also extend vp-tree to deal with symmetrized Bregman divergences, which are commonplace in applications of content-based multimedia retrieval. We evaluated performances of our Bvp-tree for exact and approximate NN search on two image feature datasets. Our results show good performances of Bvp-tree, specially for symmetrized Bregman NN queries.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-00481723
- URN
- urn:oai:HAL:hal-00481723v1
- Origin repository
- UNICA