Published March 19, 2025
| Version v1
Journal article
Decompose-then-optimize: a new approach to design domain decomposition methods for optimal control problems
Contributors
Others:
- Université de Pau et des Pays de l'Adour (UPPA)
- Laboratoire des Sciences de l'Ingénieur Appliquées à la Mécanique et au génie Electrique (SIAME) ; Université de Pau et des Pays de l'Adour (UPPA)
- IUT des Pays de l'Adour (IUT) ; Institut universitaire de Technologie Mont-de-Marsan
- Section de mathématiques [Genève] ; Université de Genève = University of Geneva (UNIGE)
- Laboratoire Jean Alexandre Dieudonné (LJAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)
- Physique et Ingénierie Mathématique pour l'Énergie, l'environnemeNt et le bâtimenT (PIMENT) ; Université de La Réunion (UR)
- ANR-23-CE56-0007,DGMod,Vers une nouvelle génération d'inversions conjointes InSAR - Gravité(2023)
- ANR-19-CE40-0011,O-TO-TT-FU,Optimisation topologique des transferts thermiques dans les fluides(2019)
Description
For optimal control problems there is a classical discussion of whether one should first optimize the problem and then discretize it, or the other way round. We are interested in exploring a similar question related to domain decomposition methods for optimal control problems which have received substantial attention over the past two decades, but new methods were mostly developed using the optimize-then-decompose approach. After a detailed introduction to this subject, we present and analyze a new domain decomposition method for optimal control problems that comes from the decompose-then-optimize strategy which is less common. We use as our model problem a linear quadratic optimal control problem which we decompose and then solve using an augmented Lagrangian optimization technique. This leads to a new domain decomposition algorithm for such problems that has very good scalability properties. We prove that, when the algorithm converges, it necessarily converges to an optimal point of the original, non-decomposed problem. We illustrate the efficiency of our new domain decomposition method with numerical examples from which we obtain very desirable properties for domain decomposition methods, namely that the convergence is independent of the meshsize and the number of subdomain.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.science/hal-04999634
- URN
- urn:oai:HAL:hal-04999634v1
Origin repository
- Origin repository
- UNICA