Published March 29, 2023 | Version v1
Journal article

A Hybrid Algorithm Combining Population Pharmacokinetic and Machine Learning for Isavuconazole Exposure Prediction

Others:
Modèles et algorithmes pour l'intelligence artificielle (MAASAI) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Laboratoire Jean Alexandre Dieudonné (LJAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Scalable and Pervasive softwARe and Knowledge Systems (Laboratoire I3S - SPARKS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
Department of Pharmacology and Toxicology, University Hospital of Nice, Nice, France.
Pharmacology & Transplantation, INSERM U1248, Université de Limoges, Limoges, France.
Department of Pharmacology, Toxicology and Pharmacovigilance, University Hospital of Limoges, Limoges, France.
Department of Pharmacology and Pharmacovigilance Center of Nice, Université Côte d'Azur, University Hospital of Nice, Nice, France.
Pharmacologie et Transplantation (P&T) ; CHU Limoges-Institut National de la Santé et de la Recherche Médicale (INSERM)-OmégaHealth (ΩHealth) ; Université de Limoges (UNILIM)-Université de Limoges (UNILIM)
Service de Pharmacologie, toxicologie et pharmacovigilance [CHU Limoges] ; CHU Limoges

Description

Objectives Maximum a posteriori Bayesian estimation (MAP-BE) based on a limited sampling strategy and a population pharmacokinetic (POPPK) model is used to estimate individual pharmacokinetic parameters. Recently, we proposed a methodology that combined population pharmacokinetic and machine learning (ML) to decrease the bias and imprecision in individual iohexol clearance prediction. The aim of this study was to confirm the previous results by developing a hybrid algorithm combining POPPK, MAP-BE and ML that accurately predicts isavuconazole clearance. Methods A total of 1727 isavuconazole rich PK profiles were simulated using a POPPK model from the literature, and MAP-BE was used to estimate the clearance based on: (i) the full PK profiles (refCL); and (ii) C24h only (C24h-CL). Xgboost was trained to correct the error between refCL and C24h-CL in the training dataset (75%). C24h-CL as well as ML-corrected C24h-CL were evaluated in a testing dataset (25%) and then in a set of PK profiles simulated using another published POPPK model. Results A strong decrease in mean predictive error (MPE%), imprecision (RMSE%) and the number of profiles outside ± 20% MPE% (n-out20%) was observed with the hybrid algorithm (decreased in MPE% by 95.8% and 85.6%; RMSE% by 69.5% and 69.0%; n-out20% by 97.4% and 100% in the training and testing sets, respectively. In the external validation set, the hybrid algorithm decreased MPE% by 96%, RMSE% by 68% and n-out20% by 100%. Conclusion The hybrid model proposed significantly improved isavuconazole AUC estimation over MAP-BE based on the sole C24h and may improve dose adjustment.

Abstract

International audience

Additional details

Created:
February 4, 2024
Modified:
February 4, 2024