Neural Network Information Leakage through Hidden Learning
- Others:
- Combinatorics, Optimization and Algorithms for Telecommunications (COATI) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Inria de Paris ; Institut National de Recherche en Informatique et en Automatique (Inria)
- Institut de Recherche en Informatique Fondamentale (IRIF (UMR_8243)) ; Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
- OPAL-Meso
Description
We investigate the problem of making an artificial neural network perform hidden computations whose result can be easily retrieved from the network's output. In particular, we consider the following scenario. A user is provided a neural network for a classification task by a third party. The user's input to the network contains sensitive information and the third party can only observe the output of the network. I this work, we provide a simple and efficient training procedure, which we call hidden learning, that produces two networks: (i) one that solves the original classification task with performance near to state of the art; (ii) a second one that takes as input the output of the first, retrieving sensitive information to solve a second classification task with good accuracy. Our result might expose important issues from an information security point of view, as for the use of artificial neural networks in sensible applications.
Abstract
International audience
Additional details
- URL
- https://hal.science/hal-03157141
- URN
- urn:oai:HAL:hal-03157141v4
- Origin repository
- UNICA