Formalization of double-word arithmetic, and comments on "Tight and rigorous error bounds for basic building blocks of double-word arithmetic"
- Creators
- Muller, Jean-Michel
- Rideau, Laurence
- Others:
- Arithmetic and Computing (ARIC) ; Inria Grenoble - Rhône-Alpes ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire de l'Informatique du Parallélisme (LIP) ; École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)
- Sûreté du logiciel et Preuves Mathématiques Formalisées (STAMP) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- ANR-20-CE48-0014,NuSCAP,Sûreté numérique pour les preuves assistées par ordinateur(2020)
Description
Recently, a complete set of algorithms for manipulating double-word numbers (some classical, some new) was analyzed [15]. We have formally proven all the theorems given in that paper, using the Coq proof assistant. The formal proof work led us to: i) locate mistakes in some of the original paper proofs (mistakes that, however, do not hinder the validity of the algorithms), ii) significantly improve some error bounds, and iii) generalize some results by showing that they are still valid if we slightly change the rounding mode. The consequence is that the algorithms presented in [15] can be used with high confidence, and that some of them are even more accurate than what was believed before. This illustrates what formal proof can bring to computer arithmetic: beyond mere (yet extremely useful) verification, correction and consolidation of already known results, it can help to find new properties. All our formal proofs are freely available.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-02972245
- URN
- urn:oai:HAL:hal-02972245v2
- Origin repository
- UNICA