Published June 28, 2009
| Version v1
Conference paper
Improving M/EEG source localization with an inter-condition sparse prior
Creators
Contributors
Others:
- Computer and biological vision (ODYSSEE) ; Département d'informatique - ENS-PSL (DI-ENS) ; École normale supérieure - Paris (ENS-PSL) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Centre Inria d'Université Côte d'Azur (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Inria Paris-Rocquencourt ; Institut National de Recherche en Informatique et en Automatique (Inria)-École nationale des ponts et chaussées (ENPC)
- Laboratoire d'Analyse, Topologie, Probabilités (LATP) ; Université Paul Cézanne - Aix-Marseille 3-Université de Provence - Aix-Marseille 1-Centre National de la Recherche Scientifique (CNRS)
- This work was supported by the EADS Foundation grant no. 2118 and the ANR ViMAGINE.
Description
The inverse problem with distributed dipoles models in M/EEG is strongly ill-posed requiring to set priors on the solution. Most common priors are based on a convenient $\ell_2$ norm. However such methods are known to smear the estimated distribution of cortical currents. In order to provide sparser solutions, other norms than $\ell_2$ have been proposed in the literature, but they often do not pass the test of real data. Here we propose to perform the inverse problem on multiple experimental conditions simultaneously and to constrain the corresponding active regions to be different, while preserving the robust $\ell_2$ prior over space and time. This approach is based on a mixed norm that sets a $\ell_1$ prior between conditions. The optimization is performed with an efficient iterative algorithm able to handle highly sampled distributed models. The method is evaluated on two synthetic datasets reproducing the organization of the primary somatosensory cortex (S1) and the primary visual cortex (V1), and validated with MEG somatosensory data.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.science/hal-00424029
- URN
- urn:oai:HAL:hal-00424029v1
Origin repository
- Origin repository
- UNICA