The SAPP pipeline for the determination of stellar abundances and atmospheric parameters of stars in the core program of the PLATO mission
- Creators
- Gent, Matthew Raymond
- Bergemann, Maria
- Serenelli, Aldo
- Casagrande, Luca
- Gerber, Jeffrey M.
- Heiter, Ulrike
- Kovalev, Mikhail
- Morel, Thierry
- Nardetto, Nicolas
- Adibekyan, Vardan
- Aguirre, Víctor Silva
- Asplund, Martin
- Belkacem, Kevin
- del Burgo, Carlos
- Bigot, Lionel
- Chiavassa, Andrea
- Díaz, Luisa Fernanda Rodríguez
- Goupil, Marie-Jo
- Hernández, Jonay I. González
- Mourard, Denis
- Merle, Thibault
- Mészáros, Szabolcs
- Marshall, Douglas J.
- Ouazzani, Rhita-Maria
- Plez, Bertrand
- Reese, Daniel
- Trampedach, Regner
- Tsantaki, Maria
- Others:
- Max Planck Institute for Astronomy (MPIA)
- Joseph Louis LAGRANGE (LAGRANGE) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
- Laboratoire Univers et Particules de Montpellier (LUPM) ; Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)
Description
We introduce the SAPP (Stellar Abundances and atmospheric Parameters Pipeline), the prototype of the code that will be used to determine parameters of stars observed within the core program of the PLATO space mission. The pipeline is based on the Bayesian inference and provides effective temperature, surface gravity, metallicity, chemical abundances, and luminosity. The code in its more general version can have a much wider range of applications. It can also provide masses, ages, and radii of stars and can be used for stars of stellar types not targeted by the PLATO core program, such as red giants. We validate the code on a set of 27 benchmark stars that includes 19 FGK-type dwarfs, 6 GK-type sub-giants, and 2 red giants. Our results suggest that combining various observables is the optimal approach, as it allows to break degeneracies between different parameters and yields more accurate values of stellar parameters and more realistic uncertainties. For the PLATO core sample, we obtain a typical uncertainty of 27(syst.) ± 37 (stat.) K for T eff , 0.00 ± 0.01 dex for log g, 0.02 ± 0.02 dex for metallicity [Fe/H], −0.01 ± 0.03 R for radii, −0.01 ± 0.05 M for stellar masses, and −0.14 ± 0.63 Gyrs for ages. We also show that the best results are obtained by combining the ν max scaling relation and stellar spectra. This resolves the notorious problem of degeneracies, which is particularly important for F-type stars.
Abstract
25 pages, 42 figures
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-03440305
- URN
- urn:oai:HAL:hal-03440305v1
- Origin repository
- UNICA