Daylighting and Energy Performance Evaluation of an Egg-Crate Device for Hospital Building Retrofitting in a Mediterranean Climate
Description
Hospital buildings present a significant savings potential in order to meet the objectives of H2020. The improvement of healthcare built environments contributes to improving the health of patients. In this respect, passive measurements must be prioritized, especially in relation to the weakest element of the building thermal enclosure: the window opening. Shading devices allow solar radiation and indoor temperature to be controlled, as well as improving visual comfort, mostly in buildings with a Mediterranean climate. This factor is of great importance when considering the increase in outdoor temperatures expected due to climate change. Unlike other studies in which predictive models are implemented, this paper examines a methodology based on the simultaneous monitoring of ambient variables, in real use and operative conditions, for two hospital rooms located in southern Spain. The aim of this research is to provide a comparative assessment of ambient conditions in a standard room with an egg-crate device and in a non-shaded one. The use of an egg-crate device allows a better yearly performance, improving natural illuminance levels, reducing incident solar radiation on the window, and decreasing artificial lighting consumption. However, its efficiency is greatly conditioned by the user patterns in relation to ambient systems, as the blind aperture level and the activation of the lighting system are directly controlled by users.
Additional details
- URL
- https://idus.us.es/handle//11441/79133
- URN
- urn:oai:idus.us.es:11441/79133
- Origin repository
- USE