Progressive Discrete Domains for Implicit Surface Reconstruction
- Others:
- Geometric Modeling of 3D Environments (TITANE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- Université Côte d'Azur (UCA)
- Adobe [France]
- AlgebRe, geOmetrie, Modelisation et AlgoriTHmes (AROMATH) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-National and Kapodistrian University of Athens (NKUA)
- Institut Polytechnique de Paris (IP Paris)
- Département Images, Données, Signal (IDS) ; Télécom ParisTech
- Image, Modélisation, Analyse, GEométrie, Synthèse (IMAGES) ; Laboratoire Traitement et Communication de l'Information (LTCI) ; Institut Mines-Télécom [Paris] (IMT)-Télécom Paris-Institut Mines-Télécom [Paris] (IMT)-Télécom Paris
- This work has been supported by the French government, through the 3IA Côte d'Azur Investments in the Future project managed by the National Research Agency (ANR) with the reference number ANR-19-P3IA-0002.
- ANR-19-P3IA-0002,3IA@cote d'azur,3IA Côte d'Azur(2019)
Citation
Description
Many global implicit surface reconstruction algorithms formulate the problem as a volumetric energy minimization, trading data fitting for geometric regularization. As a result, the output surfaces may be located arbitrarily far away from the input samples. This is amplified when considering i) strong regularization terms, ii) sparsely distributed samples or iii) missing data. This breaks the strong assumption commonly used by popular octree-based and triangulation-based approaches that the output surface should be located near the input samples. As these approaches refine during a pre-process, their cells near the input samples, the implicit solver deals with a domain discretization not fully adapted to the final isosurface.We relax this assumption and propose a progressive coarse-to-fine approach that jointly refines the implicit function and its representation domain, through iterating solver, optimization and refinement steps applied to a 3D Delaunay triangulation. There are several advantages to this approach: the discretized domain is adapted near the isosurface and optimized to improve both the solver conditioning and the quality of the output surface mesh contoured via marching tetrahedra.
Abstract
International audience
Additional details
- URL
- https://hal.inria.fr/hal-03276748
- URN
- urn:oai:HAL:hal-03276748v1
- Origin repository
- UNICA