Progressive Compression of Triangle Meshes
- Others:
- Origami (Origami) ; Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS) ; Université Lumière - Lyon 2 (UL2)-École Centrale de Lyon (ECL) ; Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon) ; Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Lumière - Lyon 2 (UL2)-École Centrale de Lyon (ECL) ; Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon) ; Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Geometric Modeling of 3D Environments (TITANE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Description
This paper details the first publicly available implementation of the progressive mesh compression algorithm described in the paper entitled "Compressed Progressive Meshes" [R. Pajarola and J. Rossignac, IEEE Transactions on Visualization and Computer Graphics, 6 (2000), pp. 79-93]. Our implementation is generic, modular, and includes several improvements in the stopping criteria and final encoding. Given an input 2-manifold triangle mesh, an iterative simplification is performed, involving batches of edge collapse operations guided by an error metric. During this compression step, all the information necessary for the reconstruction (at the decompression step) is recorded and compressed using several key features: geometric quantization, prediction, and spanning tree encoding. Our implementation allowed us to carry out an experimental comparison of several settings for the key parameters of the algorithm: the local error metric, the position type of the resulting vertex (after collapse), and the geometric predictor. Source Code The proposed implementation is publicly available through the MEPP2 platform [20]. The algorithm can be used either as a command-line executable or integrated into the MEPP2 GUI. The source code is written in C++ and is accessible on the IPOL web page of this article 1 , as well as on the GitHub page of MEPP2 (MEPP-team/MEPP2 project 2).
Abstract
International audience
Additional details
- URL
- https://hal.inria.fr/hal-03924042
- URN
- urn:oai:HAL:hal-03924042v1
- Origin repository
- UNICA