On the semi-proper orientations of graphs
- Creators
- Dehghan, Ali
- Havet, Frédéric
- Others:
- Carleton University
- Combinatorics, Optimization and Algorithms for Telecommunications (COATI) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- ANR-19-CE48-0013,DIGRAPHS,Digraphes(2019)
Description
A weighted orientation of a graph G is a pair (D, w) where D is an orientation of G and w is an arc-weighting of D, that is an application A(D) → N \ {0}. The in-weight of a vertex v in a weighted orientation (D, w), denoted by S (D,w) (v), is the sum of the weights of arcs with head v in D. A semi-proper orientation is a weighted orientation such that two adjacent vertices have different in-weights. The semiproper orientation number of a graph G, denoted by − → χs(G), is min (D,w)∈Γ max v∈V (G) S (D,w) (v), where Γ is the set of all semi-proper orientations of G. A semi-proper orientation (D, w) of a graph G is optimal if max v∈V (G) S (D,w) (v) = − → χs(G). In this work, we show that every graph G has an optimal semi-proper orientation (D, w) such that the weight of each arc is 1 or 2. We then give some bounds on the semi-proper orientation number: we show Mad(G) 2 ≤ − → χs(G) ≤ Mad(G) 2 +χ(G)−1 and δ * (G)+1 2 ≤ − → χs(G) ≤ 2δ * (G) for all graph G, where Mad(G) and δ * (G) are the maximum average degree and the degeneracy of G, respectively. We then deduce that the maximum semi-proper orientation number of a tree is 2, of a cactus is 3, of an outerplanar graph is 4, and of a planar graph is 6. Finally, we consider the computational complexity of associated problems: we show that determining whether − → χs(G) = χ(G) is NP-complete for planar graphs G with − → χs(G) = 2; we also show that deciding whether − → χs(G) ≤ 2 is NP-complete for planar bipartite graphs G.
Abstract
International audience
Additional details
- URL
- https://hal.inria.fr/hal-03035385
- URN
- urn:oai:HAL:hal-03035385v1
- Origin repository
- UNICA