On finding the best and worst orientations for the metric dimension
- Others:
- Universidade Federal do Ceará = Federal University of Ceará (UFC)
- Algorithmes, Graphes et Combinatoire (ALGCO) ; Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM) ; Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
- Combinatorics, Optimization and Algorithms for Telecommunications (COATI) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Inria
- ANR-19-CE48-0013,DIGRAPHS,Digraphes(2019)
Description
The (directed) metric dimension of a digraph D, denoted by MD(D), is the size of a smallest subset S of vertices such that every two vertices of D are distinguished via their distances from the vertices in S. In this paper, we investigate the graph parameters BOMD(G) and WOMD(G) which are respectively the smallest and largest metric dimension over all orientations of G. We show that those parameters are related to several classical notions of graph theory and investigate the complexity of determining those parameters. We show that BOMD(G) = 1 if and only if G is hypotraceable (that is has a path spanning all vertices but one), and deduce that deciding whether BOMD(G) ≤ k is NP-complete for every positive integer k. We also show that WOMD(G) ≥ α(G) − 1, where α(G) is the stability number of G. We then deduce that for every fixed positive integer k, we can decide in polynomial time whether WOMD(G) ≤ k. The most significant results deal with oriented forests. We provide a linear-time algorithm to compute the metric dimension of an oriented forest and a linear-time algorithm that, given a forest F , computes an orientation D − with smallest metric dimension (i.e. such that MD(D −) = BOMD(F)) and an orientation D + with largest metric dimension (i.e. such that MD(D +) = WOMD(F)).
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-02921466
- URN
- urn:oai:HAL:hal-02921466v1
- Origin repository
- UNICA