Optimized Schwarz methods for the time-harmonic Maxwell equations with damping
- Others:
- Numerical modeling and high performance computing for evolution problems in complex domains and heterogeneous media (NACHOS) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
- Section de mathématiques [Genève] ; Université de Genève = University of Geneva (UNIGE)
Citation
Description
In a previous paper, two of the authors have proposed and analyzed an entire hierarchy of optimized Schwarz methods for Maxwell's equations both in the time-harmonic and time-domain case. The optimization process has been perfomed in a particular situation where the electric conductivity was neglected. Here, we take into account this physical parameter which leads to a fundamentally different analysis and a new class of algorithms for this more general case. From the mathematical point of view, the approach is different, since the algorithm does not encounter the pathological situations of the zero-conductivity case and thus the optimization problems are different. We analyze one of the algorithms in this class in detail and provide asymptotic results for the remaining ones. We illustrate our analysis with numerical results.
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-00637822
- URN
- urn:oai:HAL:hal-00637822v1
- Origin repository
- UNICA