Spectral and spatiotemporal variability ECG parameters linked to catheter ablation outcome in persistent atrial fibrillation
- Others:
- Laboratoire d'Informatique, Signaux, et Systèmes de Sophia-Antipolis (I3S) / Equipe SIGNAL ; Signal, Images et Systèmes (Laboratoire I3S - SIS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Centre Hospitalier Princesse Grace de Monaco (CHPG) ; Monaco
- IHU-LIRYC ; Université Bordeaux Segalen - Bordeaux 2-CHU Bordeaux [Bordeaux]
- ANR-10-JCJC-0303,PERSIST,Caractérisation multidimensionnelle du signal électrocardiographique pour prédire le succès de la thérapie d'ablation par radiofréquence chez les patients souffrant de fibrillation auriculaire persistante(2010)
Description
With the increasing prevalence of atrial fibrillation (AF), there is a strong clinical interest in determining whether a patient suffering from persistent AF will benefit from catheter ablation (CA) therapy at long term. This work presents several regression models based on noninvasive measures automatically computed from the standard 12- lead electrocardiogram (ECG) such as AF dominant frequency (DF), spectral concentration and spatiotemporal variability (STV). Sixty-two AF patients referred to CA were enrolled in this study. Forty-seven of them had no recurrence after CA during an average follow-up of 14 ± 8 months. The ECG features were extracted from an ECG recorded before the CA intervention and they were combined by means of logistic regression. The combination of DF and STV values from different precordial leads reached AUC = 0.939, outperforming the best results by using only one kind of features, such as DF (AUC = 0.801), and yielding a global accuracy of 93.5% for discriminating the best long-term responders to CA. These results point out the need to take into consideration the spatial variation of spectral ECG parameters to build predictive models dealing with AF.
Abstract
International audience
Additional details
- URL
- https://hal.science/hal-01587371
- URN
- urn:oai:HAL:hal-01587371v1
- Origin repository
- UNICA