Joint data imputation and mechanistic modelling for simulating heart-brain interactions in incomplete datasets
- Others:
- E-Patient : Images, données & mOdèles pour la médeciNe numériquE (EPIONE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- Universitat Pompeu Fabra [Barcelona] (UPF)
- This work has been supported by the French government, through the 3IA Côte d'Azur Investments in the Future project managed by the National ResearchAgency (ANR) with the reference number ANR-19-P3IA-0002, and by the ANR JCJC project Fed-BioMed 19-CE45-0006-01. The project was also supported bythe Inria Sophia Antipolis - Méditerranée, "NEF" computation cluster and by the Spanish Ministry of Science, Innovation and Universities under the Retos I+D Programme (RTI2018-101193-B-I00) and the Maria de Maeztu Units of Excellence Programme (MDM-2015-0502). This research has been conducted using the UK Biobank Resource undder Application Number 20576 (PI Nicholas Ayache). Additional information can be found at: https://www.ukbiobank.ac.uk
- ANR-19-P3IA-0002,3IA@cote d'azur,3IA Côte d'Azur(2019)
- ANR-19-CE45-0006,FED-BIOMED,Apprentissage statistique fédéré pour une nouvelle generation de méta-analyses de données biomédicales sécurisés et à grande échelle(2019)
Description
The use of mechanistic models in clinical studies is limited by the lack of multi-modal patients data representing different anatomical and physiological processes. For example, neuroimaging datasets do not provide a sufficient representation of heart features for the modeling of cardiovascular factors in brain disorders. To tackle this problem we introduce a probabilistic framework for joint cardiac data imputation and personalisation of cardiovascular mechanistic models, with application to brain studies with incomplete heart data. Our approach is based on a variational framework for the joint inference of an imputation model of cardiac information from the available features, along with a Gaussian Process emulator that can faithfully reproduce personalised cardiovas-cular dynamics. Experimental results on UK Biobank show that our model allows accurate imputation of missing cardiac features in datasets containing minimal heart information, e.g. systolic and diastolic blood pressures only, while jointly estimating the emulated parameters of the lumped model. This allows a novel exploration of the heart-brain joint relationship through simulation of realistic cardiac dynamics corresponding to different conditions of brain anatomy.
Abstract
International audience
Additional details
- URL
- https://hal.inria.fr/hal-02952576
- URN
- urn:oai:HAL:hal-02952576v2
- Origin repository
- UNICA