AYNEC: All you need for evaluating completion techniques in knowledge graphs
Description
The popularity of knowledge graphs has led to the development of techniques to refine them and increase their quality. One of the main refinement tasks is completion (also known as link prediction for knowledge graphs), which seeks to add missing triples to the graph, usually by classifying potential ones as true or false. While there is a wide variety of graph completion techniques, there is no standard evaluation setup, so each proposal is evaluated using different datasets and metrics. In this paper we present AYNEC, a suite for the evaluation of knowledge graph completion techniques that covers the entire evaluation workflow. It includes a customisable tool for the generation of datasets with multiple variation points related to the preprocessing of graphs, the splitting into training and testing examples, and the generation of negative examples. AYNEC also provides a visual summary of the graph and the optional exportation of the datasets in an open format for their visualisation. We use AYNEC to generate a library of datasets ready to use for evaluation purposes based on several popular knowledge graphs. Finally, it includes a tool that computes relevant metrics and uses significance tests to compare each pair of techniques. These open source tools, along with the datasets, are freely available to the research community and will be maintained.
Abstract
Ministerio de Economía y Competitividad TIN2016-75394-R
Additional details
- URL
- https://idus.us.es/handle//11441/93572
- URN
- urn:oai:idus.us.es:11441/93572
- Origin repository
- USE