Robust parallel robot calibration with partial information.
- Creators
- Daney, David
- Emiris, Ioannis Z.
- Others:
- Solving problems through algebraic computation and efficient software (SPACES) ; INRIA Lorraine ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)
- Geometry, algebra, algorithms (GALAAD) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
Description
A new algorithm for calibrating Gough platforms is proposed. It requires internal sensor measurements and only the position information provided by external sensors. It removes the need to measure orientation, which is intricate and error-prone, by algebraic elimination. This approach, relying on resultants and dialytic elimination, produces an equivalent, yet simpler, set of equations. Numerical simulation compares existing techniques using partial information to our method, which proves to be significantly more robust, without compromising accuracy: it reduces initial error in pose determination by $99\%$ and 80-98\%, in two sets of experiments with realistic conditions. We compare different choices for the measured configurations and show the relevance of configurations at the workspace's boundary. This increases reliability by avoiding to use any random measured configurations.
Abstract
Colloque avec actes et comité de lecture. internationale.
Abstract
International audience
Additional details
- URL
- https://hal.inria.fr/inria-00100583
- URN
- urn:oai:HAL:inria-00100583v1
- Origin repository
- UNICA