Published 2021 | Version v1
Publication

Pro-inflammatory cytokines induce insulin and glucagon double positive human islet cells that are resistant to apoptosis

Citation

An error occurred while generating the citation.

Description

The presence of islet cells double positive for insulin and glucagon (Ins+/Glu+) has been described in the pancreas from both type 2 (T2D) and type 1 (T1D) diabetic subjects. We studied the role of pro-inflammatory cytokines on the occurrence, trajectory, and characteristics of Ins+/Glu+ cells in human pancreatic islets. Pancreas samples, isolated islets, and dispersed islet cells from 3 T1D and 11 non-diabetic (ND) multi-organ donors were studied by immunofluorescence, confocal microscopy, and/or electron microscopy. ND islet cells were exposed to interleukin-1β and inter-feron-γ for up to 120 h. In T1D islets, we confirmed an increased prevalence of Ins+/Glu+ cells. Cyto-kine-exposed islets showed a progressive increase of Ins+/Glu+ cells that represented around 50% of endocrine cells after 120h. Concomitantly, cells expressing insulin granules only decreased significantly over time, whereas those containing only glucagon granules remained stable. Interestingly, Ins+/Glu+ cells were less prone to cytokine-induced apoptosis than cells containing only insulin. Cy-tokine-exposed islets showed down-regulation of β-cell identity genes. In conclusion, pro-inflam-matory cytokines induce Ins+/Glu+ cells in human islets, possibly due to a switch from a β-to a β-/α-cell phenotype. These Ins+/Glu+ cells appear to be resistant to cytokine-induced apoptosis.

Additional details

Created:
March 27, 2023
Modified:
December 1, 2023