Univariate Algebraic Kernel and Application to Arrangements
- Others:
- Effective Geometric Algorithms for Surfaces and Visibility (VEGAS) ; INRIA Lorraine ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)
- Geometry, algebra, algorithms (GALAAD) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
- Jan Vahrenhold
Description
We present a cgal-based univariate algebraic kernel, which provides certied real-root isolation of univariate polynomials with integer coecients and standard functionalities such as basic arithmetic operations, greatest common divisor (gcd) and square-free factorization, as well as comparison and sign evaluations of real algebraic numbers. We compare our kernel with other comparable kernels, demonstrating the eciency of our approach. Our experiments are performed on large data sets including polynomials of high degree (up to 2 000) and with very large coecients (up to 25 000 bits per coecient). We also address the problem of computing arrangements of x-monotone polynomial curves. We apply our kernel to this problem and demonstrate its eciency compared to previous solutions available in cgal.
Abstract
International audience
Additional details
- URL
- https://hal.inria.fr/inria-00431559
- URN
- urn:oai:HAL:inria-00431559v1
- Origin repository
- UNICA