Published 2011
| Version v1
Journal article
Farthest-Polygon Voronoi Diagrams
Contributors
Others:
- Department of Electrical Engineering [Korea Advanced Institute of Science and Technology] (KAIST) ; Korea Advanced Institute of Science and Technology (KAIST)
- Effective Geometric Algorithms for Surfaces and Visibility (VEGAS) ; INRIA Lorraine ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)
- Geometric computing (GEOMETRICA) ; Centre Inria d'Université Côte d'Azur (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre Inria de Saclay ; Institut National de Recherche en Informatique et en Automatique (Inria)
- National ICT Australia [Sydney] (NICTA)
- Geometry and Lighting (ALICE) ; INRIA Lorraine ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)
- School of Computing - Soongsil University, Séoul ; Soongsil University, Seoul
Description
Given a family of k disjoint connected polygonal sites in general position and of total complexity n, we consider the farthest-site Voronoi diagram of these sites, where the distance to a site is the distance to a closest point on it. We show that the complexity of this diagram is O(n), and give an O(n log^3 n) time algorithm to compute it. We also prove a number of structural properties of this diagram. In particular, a Voronoi region may consist of k-1 connected components, but if one component is bounded, then it is equal to the entire region.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://inria.hal.science/inria-00442816
- URN
- urn:oai:HAL:inria-00442816v3
Origin repository
- Origin repository
- UNICA