Published 2007
| Version v1
Journal article
Simulating planet migration in globally evolving disks
Creators
Contributors
Others:
- Observatoire de la Côte d'Azur (OCA) ; Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Laboratoire de Cosmologie, Astrophysique Stellaire & Solaire, de Planétologie et de Mécanique des Fluides (CASSIOPEE) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
- Département d'Astrophysique, de physique des Particules, de physique Nucléaire et de l'Instrumentation Associée (DAPNIA) ; Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
- Universidad Nacional Autónoma de México = National Autonomous University of Mexico (UNAM)
Description
Context.Numerical simulations of planet-disk interactions are usually performed with hydro-codes that – because they consider only an annulus of the disk, over a 2D grid – cannot take into account the global evolution of the disk. However, the global evolution governs type II planetary migration, so that the accuracy of the planetary evolution can be questioned.Aims.To develop an algorithm that models the local planet-disk interactions together with the global viscous evolution of the disk.Methods.We surround the usual 2D grid with a 1D grid ranging over the real extension of the disk. The 1D and 2D grids are coupled at their common boundaries via ghost rings, paying particular attention to the fluxes at the interface, especially the flux of angular momentum carried by waves. The computation is done in the frame centered on the center of mass to ensure angular momentum conservation.Results.The global evolution of the disk and the local planet-disk interactions are both well described and the feedback of one on the other can be studied with this algorithm, for a negligible additional computing cost with respect to the usual algorithms.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.archives-ouvertes.fr/hal-00388110
- URN
- urn:oai:HAL:hal-00388110v1
Origin repository
- Origin repository
- UNICA