Published 2016 | Version v1
Publication

Brown carbon and thermal-optical analysis: A correction based onoptical multi-wavelength apportionment of atmospheric aerosols

Description

Thermo-optical analysis is widely adopted for the quantitative determination of total, TC, organic, OC and elemental, EC, Carbon in aerosol samples collected on quartz fibre filters. Nevertheless, the methodology presents several issues in particular about the artefacts related to the formation of pyrolytic carbon. It is usually neglected the uncertainty due to the possible presence of brown carbon (BrC) in the sample under analysis, i.e. the optically active fraction of OC produced by biomass burning and with characteristics intermediate between OC and EC. We introduce here a novel correction to the standard thermooptical protocol based on the determination of the fraction of the sample absorbance due to the (possible) presence of BrC. This is achievable thanks to the coupled use of the Multi Wavelength Absorbance Analyser (MWAA) of the University of Genoa and a standard Sunset Inc. EC/OC analyser. Our correction provides a firmer OC/EC separation as well as an operative quantification of the BrC mass. The methodology has been validated against independent determination of the levoglucosan content in the same filters sent to the Sunset analysis. Corrections up to 23% in the OC and EC values, determined via the standard and new thermo-optical analysis, have been found in a set of PM10 (i.e. Particulate Matter with aerodynamic diameter less than 10 mm) samples collected wintertime at a mountain site in Northern Italy.

Additional details

Created:
March 27, 2023
Modified:
November 28, 2023