Published April 15, 2024
| Version v1
Conference paper
Human Trajectory Forecasting in 3D Environments: Navigating Complexity under Low Vision
Contributors
Others:
- Biologically plausible Integrative mOdels of the Visual system : towards synergIstic Solutions for visually-Impaired people and artificial visiON (BIOVISION) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- Université Côte d'Azur (UniCA)
- Institut universitaire de France (IUF) ; Ministère de l'Education nationale, de l'Enseignement supérieur et de la Recherche (M.E.N.E.S.R.)
- Laboratoire d'Informatique, Signaux, et Systèmes de Sophia-Antipolis (I3S) / Equipe SIGNET ; COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)
- This work was granted access to the HPC resources of IDRIS under the allocation 2024-AD011014115R1 made by GENCI.
- ANR-21-CE33-0001,CREATTIVE3D,Création de contextes 3D portés par l'attention pour la basse vision(2021)
Description
This work tackles the challenge of predicting human trajectories while carrying out complex tasks in contextually-rich virtual environments. We evaluate the CREATIVE3D multimodal dataset on human interaction and navigation in 3D virtual reality (VR). In the dataset, navigating traffic crossings with simulated visual impairments are used as an example of complex or unpredictable situations. We establish evaluations for a base multi-layer perceptron (MLP) and two state-of-the-art models: TRACK (RNN) and GIMO (transformer), on tasks with varying levels of complexity and visual impairment conditions. Our findings indicate that a model trained on normal visual conditions and simple tasks does not generalize on test data with complex interactions and simulated visual impairments, despite including 3D scene context and user gaze. In comparison, a model trained on diverse visual and task conditions is more robust, with up to 84% decrease in positional error and 9% in orientation error, but with the trade-off of lower accuracy for simpler tasks. We believe this work can benefit real-world applications such as autonomous driving, and enable context-aware computing for diverse scenarios and populations.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://inria.hal.science/hal-04569869
- URN
- urn:oai:HAL:hal-04569869v1
Origin repository
- Origin repository
- UNICA